![]() |
||||
1.1 Medicion aproximada de figuras amorfas
Calcular las áreas de una figura regular es una tarea muy fácil, por lo cual la sustitución de la longitud, anchura u otras cantidades en la fórmula produciría el resultado.
Sin embargo, la estimación del área bajo la curva de las funciones no es tan sencilla ya que existen figuras amorfas y no fórmulas directas para estimaresta área.
La integración puede ser utilizada fructíferamente en una situación semejante.
Existen cuatro gráficas posibles para las cuales el área necesita ser evaluada.
Estas son: 1 Cuando el área está limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b.
El gráfico de la función se muestra a continuación,
![]() Para estimar el área de tal figura, considere que el área bajo la curva está compuesta por un gran número de delgadas tiras verticales.
Suponiendo que hay una tira arbitraria y para la altura y una dx para la anchura. El área de esta tira elemental sería, dA = y dx donde y = f(x)
El área total A de la región entre el eje x, la ordenada x = a y x = b y la curva y = f (x) será la sumatoria de las áreas de todas las tiras elementales en toda la región o la zona limitada.
Esto produce la fórmula, A = dA = y dx = f(x) dx La integral anterior puede ser evaluada mediante poner la función en su lugar e integrándola.
2.- La segunda situación es cuando el área está delimitada por la curva x = g(y), el eje y, y las ordenadas y = y1 y y2 = y. La gráfica de la función se muestra a continuación,
![]() Asuma que el área bajo la curva está compuesta de un gran número de tiras delgadas horizontales. Sea una tira arbitraria dy para la altura y x para la longitud. El área de esta tira elemental sería, dA = x dy donde x = g(y)
El área total A de la región entre el eje x, la ordenada y = y1 y y2 = y, y la curva x = g(y) será la sumatoria de las áreas de todas las tiras elementales en toda la región o el área limitada. Esto produce la fórmula, A = dA = x dy = g(y) dy
3 .-Se presenta una tercera situación cuando la curva en cuestión se encuentra por debajo del eje x, entonces f(x) es menor que cero desde x = a hasta x = b, el área limitada por la curva y = f(x) y las ordenadas x = a y x = b, y el eje x es negativo.
Pero el valor numérico del área debe ser tomado en consideración, entonces
A = | f(x) dx|
4 .-Una última posibilidad sería que una parte de la curva esté por encima del eje x y otra parte esté por debajo del eje x. Sea A1 el área debajo del eje x y A2 el área por encima del eje x. Por lo tanto, el área limitada por la curva y = f(x), el eje x y las ordenadas x = a y x = b serán,
A = |A1| + A2
Tomemos ahora un ejemplo para entender la solución de tales problemas,
Encuentre el área de la región limitada por la curva y2 = x y las rectas x = 1, x = 4 y por el eje x.
La curva y2 = x es una parábola con su vértice en el origen. El eje de x es la línea de simetría la cual es el eje de la parábola. El gráfico de la función dada sería,
![]() El área de la región limitada es,
A = y dx = dx = 2/3 [x3/2]14 = 2/3 [43/2 – 13/2] = 2/3 [8 – 1] = 14/3 |
![]() |